
J O U R N A L  OF MATERIALS SCIENCE 24 (1989) 3521-3528 

Layer removal analysis of residual stress 
Part 2 A new procedure for polymer mouldings with 
depth-varying Young's modulus 

M. W. A. PATERSON,  J. R. WHITE 
Department of Metallurgy and Engineering Materials, University of Newcastle-upon-Tyne, 
Newcastle-upon- Tyne NE1 7RU, UK 

A method is presented for the analysis of residual stresses in parallel-sided polymer mouldings 
with depth-varying Young's modulus. The experimental procedure is the same as the layer 
removal technique developed by Treuting and Read and requires removal of uniform layers 
from the surface and measurement of the resulting curvature when all external tractions are 
removed. When the Young's modulus varies with depth, certain of the simplifications made by 
Treuting and Read are no longer valid, but it is shown here that a satisfactory alternative 
procedure can be used as long as the modulus distribution is known. Examples of the applica- 
tion of the new procedure are given for an injection-moulded nylon 6, 6 bar stored in dry 
conditions, in which the modulus rose steeply near to the surface, and another bar, also made 
from nylon 6, 6, in which exposure to water produced a quite different distribution, with a 
maximum at the centre. 

1. Introduct ion 
Residual stresses form in injection mouldings as a 
consequence of the thermal gradients that prevail 
during the solidification process [1-3]. A further con- 
tribution to residual stress may result from molecular 
recoil as molecules that become extended during flow 
return to a more random conformation. A popular 
method of measuring these stresses in bar and plaques 
is to apply a layer removal analysis. Thin uniform 
layers are machined from one surface and the curva- 
ture that is produced to restore force equilibrium is 
measured at each incremental removal. A plot of  cur- 
vature against thickness removed can then be used to 
derive the stress distribution through the thickness of  
the moulding by a procedure described by Treuting 
and Read [4]. In this analysis the stresses are assumed 
to be uniform at a particular depth within the mould- 
ing, but biaxial stresses are allowed for; the Young's 
modulus and Poisson's ratio are taken to be uniform 
throughout. 

Injection mouldings often have a significant depth- 
dependent variation in stiffness, whether unfilled 
[5-13] or if they contain short-fibre reinforcement 
[14, 15], and it has been pointed out that this will lead 
to errors in the unmodified form of  the Treuting and 
Read analysis [16-18]. To investigate the effect of  this 
in a quantitative manner, the following procedure was 
developed and appeared as Part 1 [18]. A notional 
stress distribution (parabolic) and a notional Young's 
modulus distribution were chosen. The curvatures 
that would be obtained for successive layer removals 
from a bar with this combination were then computed. 
Finally the curvature against depth removed plot 
generated in this way Was used for an unmodified 
Treuting and Read analysis [4], using the average 
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modulus to represent the "uniform" modulus in their 
formula which enables the residual stress distribution 
to be computed from the curvature data. The com- 
puted residual stress distribution was then compared 
with the true (chosen) distribution. The computed 
distributions obtained for certain modulus distri- 
butions are reminiscent of those obtained in some 
experimental studies, and this was discussed in Part 1 
[18]. Although this confirms that modulus variations 
could account for (some of)  the departures of  experi- 
mental residual stress distributions from those pre- 
dicted from thermoelastic calculations, it does not 
provide the means to derive the stress distribution, 
even if the modulus distribution is known. The pur- 
pose of  this paper is to present a method for this. 

2. T h e o r e t i c a l  analys is  
Consider a bar, thickness 2z0, in which the Young's 
modulus E(z) varies with depth, and which possesses 
a residual stress distribution ~r~ (z). z is measured from 
the plane located at the bar centre before layer removals 
commence (referred to later as the reference surface). 
If a layer is removed, so that the upper surface is now 
located at z = z~, the bar bends to restore internal 
force equilibrium (Fig. 1). In the Treuting and Read 
derivation it is assumed that the modulus is uniform, 
so that the neutral surface is located at the centre 
of the reduced bar. When the restriction of  uniform 
modulus is removed, the location of  the neutral sur- 
face must be computed from 

fz, (z + w)Ex(z) dz = 0 (1) 
- -  Z 0 

where w is the distance of the neutral surface from 
the reference surface (Fig. 1). Ex(z) is the Young's 
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Figure 1 Cross-section of  bar with original thickness 2z 0 with central 
reference plane at z = 0. The bar curves in the sense shown when 
layers are removed so that the top surface becomes located at 
z = z~ if the surface stresses are compressive; the neutral surface 
moves down a distance w (dotted line). 

modulus in the x-direction, taken here to be the bar 
axis direction. 

If the residual stress in the x-direction is denoted 
%(z) then the bending moment per unit width about 
the neutral surface is given by 

M ~ ( Z l )  : f:' (Z + w)aix dz (2) 
z 0 

The next step, as in the Appendix in the paper by 
Treuting and Read [4], is to differentiate Mx with 
respect to z~, noting that z~ is present in the upper limit. 
of the integral and that w within the integrand is a 
function of z1 

dw fq dM~ = (z I + w)ai x 4- ~Z I -2`o dzl alx dz (3a) 

o r  

dM~ dw 
dzl - (Z1 + W)O-ix + F , - d z l  (3b) 

where F~ is defined, as in [4], as 

F ~ ( z , )  f ZI = crix dz (4) 
-- 2- 0 

By differentiating Equation 1 with respect to z~ we 
obtain 

dw rzl E~ dz = 0 
(~, + w)E~ + ~z~ ~-~o 

i.e. 

Substituting 

rearranging 

aix fq - Ex dz F~ E~-~o 

1 r~' Ex dz ( d ~ I ~  (6) 
(z, + w)E~ J-~o \ dz, J 

From Equation (4) it follows that dF,/dz~ = cqx, so 
by differentiating Equation 6 

f:~ E~ dz daix -zo - 
O-ix - -  

dzl E,- 

ai~ E) f E~ dz 
+ E~ 

d2Mx f~-l~o E~dz dM~ 
dz~ (zl + w)L~, dzl 

E~ 2, dZlf_Zofi~dz l+~z~z  1 f_zo E~dz 

X (2" 1 "l- w ) E  2 --  ( Z  1 -I- w)2Ex 

This can be rearranged to give 

1 daix O-ix dE~ 1 
Ex dz1 E~ dz l  (Zl + w)Ex 

x (z~ + w) [.z~ 
dz 

J -- z 0 

_ 1 dEx] 

(zt + w)E~ dz, J 

This in turn can be written as 

d2Mx 

dz~ + - - - -  

1 
(z~ + w) 2 

d d_{a ix )  = d [ 1 dMx l  
dzl \ E ~ )  dzl (zl + w)E~ dzl 

(7) 

1 dM~ 
E~ dz 

(8) 

dw - ( z  I + w)E x 1 dMx 
= (5) + (9) 

dz~ fz, E~ dz ( Z  l +w) f:' Exdz dzl 
--z 0 - - z  0 

Equation 5 into Equation 3b and Noting that for a self-stressed body in which internal 

4- Ex(GN r~ 2) 

0"8 l Ex (GN m 2 ) 

0.6 O ;o 
z ( m m )  (b} 

0 ' 0'.5 ~0 0'.5 ~.0 ¢.5 
(a) z (mm) 

Figure 2 Young's modulus distributions for (a) dry Nylon 6, 6 bars, and (b) wet Nylon 6, 6 bars. The left-hand axis coincides with the bar 
centre and the surface is indicated by the vertical arrow. 
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Figure 3 Plots of zE,. against distance z from the bar centre. (a) Dry bars, (b) wet bars. 

force equilibrium is maintained F~(zo) = 0 and using 
Equation 3b, Equation 9 can be integrated between 
limits z I = z~ and z~ = z0, giving 

~iAz0) ~ix(Z~) ~ix(z0)[z0 + w(z0)] 
Er(Zo) Ex(ZI) [Z0 + w(zo)]E~(zo) 

1 dM~ 
[z, + w(z,)]Ex(z,) dz, 

dM~ dz 
f l ~ dzl + . (1o)  

I (Z 1 ~- W) j z '  E x dz 
i . e .  

a i A z , )  - 
1 dM~ 

(zj + w) dzl 

dM~ dz 

- Ex(zl) dzl ~, 
' (zl + w) f-~o Ex dz 

(11) 

This is the final form of  the expression for aix. The 
requirement now is to find a suitable expression for 
M x. This is obtained by considering the bending 
moment  required to cause curvature 0x(zl) in the x- 
direction and 0y(z]) in the direction transverse to it, 
where 0 is the reciprocal of  the radius of  curvature. 
This can be written 

= f zo(  +  'eYIE dz 
V x Vy J 

(12) 

where v x and vy are the Poisson's ratios for stresses 
applied in the x- and y- directions, respectively. The 
term within the brackets in the integrand is a constant 
for a particular value of z~ and can be taken outside 
giving 

Mx = --~0 
- -  "gx "~y 
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Figure 4 Plots of z2E~ against z. (a) Dry bars, (b) wet bars. 
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leading to 

dMx _ [Q~ __+ Vy~y7 ( Z  1 - ~  H 2 ) 2 ~ ,  x 

dzl L 1 v~vy 3 

[d0~  v, doy 7 1 
+ L dz~ + dzl ] (1 - V~Vy) 

~ z2Exdz + 2wl  q zE~dz + w2I~oE~dz X f_Zo z 0 

(14) 

I f  E~(z) is known,  then zE~(z) and z2E~(z) can be 
computed ,  and  the integrals on the r ight -hand side of  
Equat ion  14 can be evaluated for  selected values of  z~ 
by measur ing  areas under  the plots o f  these functions. 
F r o m  Equa t ion  1 it follows tha t  

fq zE~ dz 
- -  Z 0 w(zl) = (15) 

I ~' E~ dz 
- z  0 

0 
0 
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Figure 6 Plots of _.[q.0_ zE~ dz against z I . Dry bars, solid line, wet 
bars, broken line. 
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Finally, measurements  o f  Qx(z~) and ~ ) y ( Z l )  made  at 
each layer removal  are plotted,  permit t ing evaluat ion 
ofdff~/dz I and d~y/dz~. Hence if v~ and vy are known,  
dM~/dz~ can be obta ined f rom Equa t ion  14. F r o m  
this the integrand in Equa t ion  11 can be computed  
and plot ted against  z~, and f rom this the integral in 
Equat ion  11 can be evaluated.  Note  that  if  Young ' s  
modulus ,  E~, is uniform,  then by  mak ing  appro-  
priate subst i tut ions (e.g. w = (z0 - z~)/2) the exact 
fo rm of  the expression for  o-~ obta ined by Treut ing 
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Figure 8 Plots of  the displacement of  the neutral surface w against 
the position z~ of the top surface after layer removals. (w = 0 when 
z I = Z0). ( ) Dry bars; ( - - - )  wet bars. 

and Read is recovered from Equations I 1 and 14, i.e. 
E~ { )2 ~d0x v;, d~y] 

°ix - 6(I Z VxVy) (Zo + z~ kdz~ + d z  I J 

+ 4(z0 + z,)(Ox + vy0y) 

- 2 ~ 7 ( 0 ~  + VyQy) dz} (16) 

3. Summary and simplification of the 
p r o c e d u r e  

3.1. Summary 
The procedure thus reduces to the following steps: 

(i) Obtain the distribution of Young's modulus with 
depth, E~(zl ). 

(ii) Hence obtain the functions ~--' E~ dz, 
-'1 z l  2 - z D  " 

~ . zE~ dz, ~ "o z E~ dz and w(zl) (from EquaUon 15). 
~iii) Measure ~\(zl) and 0.~.(zl) for successive layer 

removals. 
(iv) Find the function dM~(z~ )/dz~ from Equation 14. 
(v) Plot the function 

dM~/dzl 
Q = (17) 

(zl + w).f ~' E~ dz 

as a function of z~ and integrate it between the limits 
Zl and z0 for sufficient values of zt to generate a con- 
tinuous function. 

(vi) Use the results obtained above to evaluate 
aix(zl) from Equation 11. 

(vii) The stress distribution in the transverse direc- 
tion, %(Zl), can be evaluated using the same pro- 
cedure, interchanging subscripts x and y throughout. 

3.2. Simplification 
It has been assumed here that v., and v;. are not depth 
dependent. Values for v.~ and Vy will rarely be known 
accurately, and it can often be assumed that vx = L.; 
the analysis is not very sensitive to variations in v 
within the range of values commonly found to apply 
to thermoplastics. 

In some cases the curvature in the transverse direc- 
tion is small, and setting Qy = 0 this leads to the 
approximate expression to replace Equation 14 as 

dMx - oxE~ 1 dQx ( f~ o z2 E~ dz 
dz, (1 - v 2) + (1 ' v 2) dz, 

+2wI: '-:o zE~dz + w2 I:'--'o E ' d z )  

(18) 

The use of the approximation ~y = 0 in the unmodi- 
fied version of the Treuting and Read analysis has 
been discussed previously [t, 2] and its applicability in 
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Figure 9 Curvature Q plotted against depth of  removal (z o - z 1 ). (a) Dry bars, (b) wet bars. 
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the modified analysis presented here follows the same 
rules. 

4. Resul ts  
To illustrate the application of this new procedure, 
two types of injection-moulded bar have been chosen. 
The first is made from nylon 6, 6 (ICI grade A100S) 
moulded using conventional conditions and stored in 
a desiccator at room temperature until used in the 
tests described here ("dry bars"). The second is made 
from the same polymer under identical conditions but 

stored in water at room temperature for several 
months, and removed just prior to testing ("wet 
bars")• Separate measurements confirmed that the 
water content of the bars stored in dry conditions was 
negligible, whereas those stored in water contained 
approximately 8% by weight of water. These particu- 
lar examples were chosen for the detailed analysis 
presented here because they have quite different 
Young's modulus and residual stress distributions. 
The dry bars had been shown in other studies [15] to 
have both a fairly typical modulus distribution, vary- 
ing slowly in the interior but increasing rapidly near to 
the surface, and a fairly conventional residual stress 
distribution with compressive stress near to the sur- 
face and weak tensile stresses in the interior. The wet 
bars have a much lower overall modulus with the 
maximum value at the centre, and a very different 
residual stress distribution, with reversed sense com- 
pared to that in the dry bar. Modulus distributions for 
both types of bar are shown in Fig. 2, plotted for half 
of the bar only; it is assumed that the distribution is 
symmetrical about the centre of the bar. Note that the 
left-hand axes in Fig. 2 coincide with the bar centre 
and the surface is indicated by a double-headed arrow. 
This point is emphasized, for later on some results are 
presented on graphs plotted with the left-hand axis 
coincident with the surface, to be consistent with 
earlier papers. The left-hand axis is chosen to repre- 
sent the bar centre in Figs 2 to 8 and 10 to 12 because 
it makes the performance of  the various integrations 
demanded by the procedure more straightforward 
than if it coincided with the surface. Another obser- 
vation that can be made from Fig. 2 is that the wet 
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Figure 11 Plots of Q against z~• (a) Dry bars, (b) wet bars. 
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bars are considerably thicker than the dry bars as a 
result of swelling by the water. Further discussion of 
the significance of t he  modulus and residual stress 
distributions and a description of the methods used to 
determine the modulus distributions will be published 
elsewhere. 

Fig. 3 shows zE x plotted against z, again with half 
the bar shown and the bar surface position denoted by 
a vertical arrow; to obtain the full distribution note 
that zEx is an odd function. Fig. 4 shows z 2 E~ plotted 
against z; this function is even and the complete distri- 
bution is given by reflecting the graph in the vertical 
axis, z = 0. Next are presented the integrals of the 
functions Ex, zEx, and z~Ex, using as limits of inte- 
gration - z  0 and z~, in Figs 5, 6 and 7, respectively. 
Fig. 8 shows w(z~), plotted using Equation 15; the 
value of  w falls to zero at z, = z0. Note that it is not 
necessary to plot the functions shown in Figs 5 to 8; it 
is our reference to tabulate the functions for selec- 
ted values of Zl and to work with them in this form. 
The graphical method is used here simply for clarity of 
presentation. 

Fig. 9 shows the data obtained in the layer removal 
tests, as curvature 0 against (z0 - z,); this is plotted 
more conventionally with the left-hand axis coincident 
with the bar surface. In these examples the curvature 
in the transverse-to-flow direction is small and the 
value of 0y is taken to be zero. The measurements of 
curvature Qx in the bar axis direction fdr successive 
layer removals are shown in Fig. 9 and from these 
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Figure 13 Residual stress distributions. (a) Dry bars, (b) wet bars. 
( . . . .  ) Distributions obtained by the new method in which Young's 
modulus variations are taken into account. ( - - - )  Distributions 
obtained using the unmodified Treuting and Read analysis. 

plots can be obtained d~x/dz~. Taking Poisson's ratio 
v = 0.4 the distribution dMx/dz~ can now be com- 
puted using Equation 18 and is shown in Fig. 10. This 
is used in turn with data taken from Figs 5 and 8 to 
obtain the expression Q given in Equation !7 and this 
is shown in Fig. 11. The integral of Q was evaluated 
between the limits z, and z0 for various values ofz~ and 
is given in Fig. 12. Finally the residual stress distri- 
bution is computed from Equation 11 using the data 
in Figs 2, 8, 10 and 12 and is shown in Fig. 13 for both 
dry and wet bars. Shown also for comparison are the 
corresponding residual stress distributions obtained 
using the unmodified Treuting and Read analysis, 
taking the mean values of the distributions in Fig. 2 as 
the ("uniform") modulus. The general shape of the 
residual stress profile is preserved in both cases; there 
are detailed differences, but they are probably too 
small to be of any practical significance. 

5. Discussion and conclusions 
Although the procedure introduced here is rather 
laborious, the interpretation of the results is very 
straightforward. It is shown that the more exact method 
in which variations in Young's modulus are taken into 
account does not produce very large changes in the 
analysed profile when compared to that obtained by 
the conventional Treuting and Read analysis;even in 
the examples dealt with here in which the variations in 
Young's modulus through the thickness of the bars 
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was considerable. This was also shown in Part 1 [18]. 
Of much more interest than the exact stress levels is 
the fact that the wet bars developed tensile residual 
stresses near to the surface, and this result is shown 
equally well with the unmodified Treuting and Read 
analysis. These results and other observations on the 
effect of water uptake on Nylon 6, 6 will be discussed 
in a future publication. We conclude from the present 
study that in the majority of cases the unmodified 
procedure is perfectly adequate and we recommend it 
should continue to be the preferred method of analy- 
sis. Results presented by this laboratory and others 
over the past ten years or so, during which there has 
been considerable interest in residual stresses in poly- 
mer mouldings, are thus gauged to be generally reliable. 
The use of the modified procedure described for the 
first time here is therefore likely to be confined to cases 
in which the modulus variation is even more severe 
than in the examples used above, especially if there 
are sudden changes. This may occur with short-fibre- 
reinforced injection-moulded polymers, in which dif- 
ferent fibre orientation distributions occur in sharply 
stratified layers. This type of specimen is currently 
under investigation. 
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